Postgres Scaling Opportunities

BRUCE MOMJIAN
@ EDB

Configuring Postgres for heavy workloads can take many forms. This talk explores
available Postgres scaling options.

Creative Commons Attribution License

Last updated: April 2023

1/31

Scaling

Database scaling is the ability to increase database throughput by utilizing additional
resources such as I/O, memory, CPU, or additional computers.

However, the high concurrency and write requirements of database servers make scaling
a challenge. Sometimes scaling is only possible with multiple sessions, while other
options require data model adjustments or server configuration changes.

2/31

Outline

Postgres scaling opportunities:
1. Multi-session
2. Single-session
3. Multi-host

3/31

ical

Vertical/Horizontal Scaling
Vert

oo
5
$2e%6%"

S
35

X
S
R

5%
%%
0o 0%
tatatste

&
X

o
R

2

% %%

9%,

%%
%% %

=
X
KR

o
P30
XX

X
oy

s
K8
620%% %%

%!

%%
0‘::::
XXX XXX

2

%

o

9% %%
%0 %% %
oSeSotetel

%
X

o
X

%
SRS

ARRRRRRIRRRRRRRRRKRREN

tal

Horizon

&
ARRRRRRRRLRRRRLLRLIN,

4/31

Examples

Vertical scaling examples:
® More and faster CPUs
® More memory
® More and faster storage
e Battery-backed cache (BBU)

Horizontal scaling involves adding servers.

5/31

Hardware Components

6/31

1. Multi-Session

Database

Clients

1]

7/31

I/O Spreading Using Tablespaces

Database

Clients

ANIEREN

Requires tables & indexes to be spread across tablespaces

Tablespaces should be on different storage devices 8/31

I/O Spreading Using RAID 0

Database

Clients

n

Filil1N

Auto-hashed by storage block number

9/31

Write Spreading Using WAL Relocation

Database

Clients

Separates WAL writes from table & index I/O

10/31

Read Reduction via Increased Memory

Database

Clients

CPU

Memory

I/O

Additional memory caching reduces read requirements

11/31

Scaling Connections Using a Pooler

Database

Clients

i

Fewer idle connections reduces resource usage

12/31

Multi-Session CPU Scaling

Database

Clients

Multiple sessions spread across available CPUs

13/31

2. Single-Session

Database
Client

14/31

Read Parallelism Using effective_io_concurrency

Database
Client

Used during bitmap heap scand

Assumes table is hashed across multiple devices 15/31

I/O Scaling via Parallelism

Database

Client

Involves parallel index, heap, partition, and tablespace access

16/31

CPU Scaling via Parallelism

Database
Client

Involves parallel sorts, joins, and function execution

17/31

Sort I/O Reduction Using work_mem

Database
Client

Reduces temporary result reads & writes

18/31

Logical Dump Parallelism

pg_dump

n

Dumps tables using concurrent database connections

19/31

Logical Restore Parallelism

pg_restore

]

Loads tables and creates indexes using concurrent database connections

20/31

3. Multi-Host

a
&K
4’::‘:’:‘:00:00:0000’;‘
4 o\
ARRRRRRHRRRRRRRRRRRI,

https://wiki.postgresql.org/wiki/PGECons_CR_Scaleout_2021

21/31

https://wiki.postgresql.org/wiki/PGECons_CR_Scaleout_2021

Read Scaling Using Pgpool & Streaming Replication

INSERT, UPDATE, A SELECT

DELETE, MERGE to any host
to primary host

streaming %
replication & >

Master Slave Slave
replication

A full copy of the data exists on every node.

22/31

CPU/Memory Scaling With Asynchronous Multi-Master

SQL Queries SQL Queries

‘ Asynchronous |
-

A full copy of the data exists on every node; requires conflict resolution. The
asynchronous delay allows write-load buffering.

23/31

Oracle Real Application Clusters (RAC)

SQL Queries SQL Queries

I Synchronization I
-

L Exm &

Tables and indexes on shared storage; inter-node synchronization required for cache
consistency

24/31

I/O Scaling with Sharding: Challenges

Multi-host write queries require two-phase commit (except XC)
Multi-host visibility snapshots are not supported (except XC)
Sharding benefits are only possible with a shardable workload
Changing the sharding layout can cause downtime

Additional hosts reduce reliability; additional standby servers might be required

25/31

Application-Based Sharding

Applications

/ SQL Queries \
R -
s D

| !l|‘= |!

Applications send queries based on the sharding layout.

26/31

Sharding Using PL/Proxy

Function Calls

n

/ SQL Queries \
dy @Hﬁﬂﬂmm «|!I|.|! ||!!|n
, Wil

Requires rows to be hashed by key, supports parallel-node query execution

27/31

Sharding Using Postgres-XC

SQL Queries

- HC Conrdinaer

\ \ SQL Queries
S|

Jonns sort:

aggregates

4 4

Enables hashing of large tables, replication of others
Supports parallel-node consistent transactions and DDL

28/31

Scaling Using Foreign Data Wrappers

SQL Queries

As (©6) \
sorts (9.6) aggregates (11)

Foreign Server Foreign Server Foreign Server

Requires rows to be hashed by key

29/31

Bulk Data Scaling Using Hadoop

Map/Reduce Jobs

||
|| Imln -

30/31

Conclusion

h ttpS N / / momjian. MS/ prese ntations https://www.flickr.com/photos/87179607 @N06/

