
Mvcc Unmasked

BRUCE MOMJIAN

This talk explains how Multiversion Concurrency Control (MVCC) is implemented in

Postgres, and highlights optimizations which minimize the downsides of MVCC.

https://momjian.us/presentations Creative Commons Attribution License

Last updated: April 2024

1 / 90



Unmasked: Who Are These People?

https://www.flickr.com/photos/danielsemper/

2 / 90



Unmasked: The Original Star Wars Cast

Left to right: Han Solo, Darth Vader, Chewbacca, Leia, Luke Skywalker, R2D2

3 / 90



Why Unmask MVCC?

• Predict concurrent query behavior

• Manage MVCC performance effects

• Understand storage space reuse

4 / 90



Outline

1. Introduction to MVCC

2. MVCC Implementation Details

3. MVCC Cleanup Requirements and Behavior

5 / 90



What is MVCC?

Multiversion Concurrency Control (MVCC) allows Postgres to offer high concurrency
even during significant database read/write activity. MVCC specifically offers behavior

where "readers never block writers, and writers never block readers".

This presentation explains how MVCC is implemented in Postgres, and highlights

optimizations which minimize the downsides of MVCC.

6 / 90



Which Other Database Systems Support MVCC?

• Oracle

• DB2 (partial)

• MySQL with InnoDB

• Informix

• Firebird

• MSSQL (optional, disabled by default)

7 / 90



MVCC Behavior

INSERT

UPDATE

DELETE

old (delete)

new (insert)

Exp
Cre 40

Exp
Cre 40

47

Exp
Cre 64

78

Exp
Cre 78

8 / 90



MVCC Snapshots

MVCC snapshots control which tuples are visible for SQL statements. A snapshot is

recorded at the start of each SQL statement in READ COMMITTED transaction isolation

mode, and only at transaction start in REPEATABLE READ and SERIALIZABLE transaction

isolation modes. In fact, it is the frequency of taking new snapshots that controls the
transaction isolation behavior.

When a new snapshot is taken, the following information is gathered:

• the highest-numbered committed transaction

• the transaction numbers currently executing

Using this snapshot information, Postgres can determine if a transaction’s actions should

be visible to an executing statement.

9 / 90



MVCC Snapshots Determine Row Visibility

Visible

Invisible

Invisible

Create−Only

Create & Expire

Visible

Visible

Internally, the creation xid is stored in the system column ’xmin’, and expire in ’xmax’.

Invisible

Exp
Cre 30

Exp
Cre 50

Cre
Exp

30
110

Exp
Cre 30

75

Exp
Cre 30

80

Exp
Cre 110

For simplicity, assume all other
transactions are committed.

Open Transactions:  25, 50, 75

The highest−numbered
committed transaction:  100

Snapshot

Sequential Scan

10 / 90



MVCC Snapshot Timeline

0 25 50 75 100 125

current xid
snapshot’stransaction

id (xid)

start
xid 110

stop

Green is visible. Red is invisible.

Only transactions completed before transaction id 100 started are visible.

11 / 90



Confused Yet?

Source code comment in src/backend/utils/time/tqual.c:
((Xmin == my-transaction && inserted by the current transaction

Cmin < my-command && before this command, and
(Xmax is null || the row has not been deleted, or
(Xmax == my-transaction && it was deleted by the current transaction
Cmax >= my-command))) but not before this command,

|| or
(Xmin is committed && the row was inserted by a committed transaction, and

(Xmax is null || the row has not been deleted, or
(Xmax == my-transaction && the row is being deleted by this transaction
Cmax >= my-command) || but it’s not deleted "yet", or

(Xmax != my-transaction && the row was deleted by another transaction
Xmax is not committed)))) that has not been committed

mao [Mike Olson] says 17 march 1993: the tests in this routine are correct; if you think
they’re not, you’re wrong, and you should think about it again. i know, it happened to
me.

12 / 90



Implementation Details

All queries were generated on an unmodified version of Postgres. The contrib module

pageinspect was installed to show internal heap page information and pg_freespacemap
was installed to show free space map information.

13 / 90



Setup

CREATE TABLE mvcc_demo (val INTEGER);

DROP VIEW IF EXISTS mvcc_demo_page0;

CREATE EXTENSION pageinspect;

CREATE EXTENSION pg_freespacemap;

CREATE VIEW mvcc_demo_page0 AS
SELECT ’(0,’ || lp || ’)’ AS ctid,

CASE lp_flags
WHEN 0 THEN ’Unused’
WHEN 1 THEN ’Normal’
WHEN 2 THEN ’Redirect to ’ || lp_off
WHEN 3 THEN ’Dead’

END,
t_xmin::text::int8 AS xmin,
t_xmax::text::int8 AS xmax,
t_ctid

FROM heap_page_items(get_raw_page(’mvcc_demo’, 0))
ORDER BY lp;

14 / 90



INSERT Using Xmin

DELETE FROM mvcc_demo;

INSERT INTO mvcc_demo VALUES (1);

SELECT xmin, xmax, * FROM mvcc_demo;
xmin | xmax | val
------+------+-----
5409 | 0 | 1

All queries used in this presentation are available at https://momjian.us/main/writings/pgsql/
mvcc.sql.

15 / 90

https://momjian.us/main/writings/pgsql/mvcc.sql
https://momjian.us/main/writings/pgsql/mvcc.sql


Just Like INSERT

INSERT

UPDATE

DELETE

old (delete)

new (insert)

Exp
Cre 40

Exp
Cre 40

47

Exp
Cre 64

78

Exp
Cre 78

16 / 90



DELETE Using Xmax

DELETE FROM mvcc_demo;

INSERT INTO mvcc_demo VALUES (1);

SELECT xmin, xmax, * FROM mvcc_demo;
xmin | xmax | val
------+------+-----
5411 | 0 | 1

BEGIN WORK;

DELETE FROM mvcc_demo;

17 / 90



DELETE Using Xmax

SELECT xmin, xmax, * FROM mvcc_demo;
xmin | xmax | val
------+------+-----

SELECT xmin, xmax, * FROM mvcc_demo;
xmin | xmax | val

------+------+-----
5411 | 5412 | 1

SELECT txid_current();
txid_current
--------------

5412

COMMIT WORK;

18 / 90



Just Like DELETE

INSERT

UPDATE

DELETE

old (delete)

new (insert)

Exp
Cre 40

Exp
Cre 40

47

Exp
Cre 64

78

Exp
Cre 78

19 / 90



UPDATE Using Xmin and Xmax

DELETE FROM mvcc_demo;

INSERT INTO mvcc_demo VALUES (1);

SELECT xmin, xmax, * FROM mvcc_demo;
xmin | xmax | val
------+------+-----
5413 | 0 | 1

BEGIN WORK;

UPDATE mvcc_demo SET val = 2;

20 / 90



UPDATE Using Xmin and Xmax

SELECT xmin, xmax, * FROM mvcc_demo;
xmin | xmax | val
------+------+-----
5414 | 0 | 2

SELECT xmin, xmax, * FROM mvcc_demo;
xmin | xmax | val

------+------+-----
5413 | 5414 | 1

COMMIT WORK;

21 / 90



Just Like UPDATE

INSERT

UPDATE

DELETE

old (delete)

new (insert)

Exp
Cre 40

Exp
Cre 40

47

Exp
Cre 64

78

Exp
Cre 78

22 / 90



Aborted Transaction IDs Remain

DELETE FROM mvcc_demo;

INSERT INTO mvcc_demo VALUES (1);

BEGIN WORK;

DELETE FROM mvcc_demo;

ROLLBACK WORK;

SELECT xmin, xmax, * FROM mvcc_demo;
xmin | xmax | val
------+------+-----
5415 | 5416 | 1

23 / 90



Aborted IDs Remain, Transaction Status Is Recorded Centrally

028

008

012

016

020

024

000

004

10  Committed

01  Aborted

00  In Progress

Transaction Id (XID)

Status flagsXID

pg_xact

Tuple Creation XID: 15 Expiration XID: 27

xmin xmax

1 0 100 1

0

0

0

0

0

0

0

0 0

0

000

0

0

0

0

0

0

0

1

1

1

1

11

0

00

1

0

1

1

1

0

1

1

11

1

00

0

00

1

0 000

0

0

0

0

0

0

00

Transaction roll back marks the transaction ID as aborted. All sessions will ignore such

transactions; it is not necessary to revisit each row to undo the transaction.
24 / 90



Row Locks Using Xmax

DELETE FROM mvcc_demo;

INSERT INTO mvcc_demo VALUES (1);

BEGIN WORK;

SELECT xmin, xmax, * FROM mvcc_demo;
xmin | xmax | val
------+------+-----
5416 | 0 | 1

SELECT xmin, xmax, * FROM mvcc_demo FOR UPDATE;
xmin | xmax | val
------+------+-----
5416 | 0 | 1

25 / 90



Row Locks Using Xmax

SELECT xmin, xmax, * FROM mvcc_demo;
xmin | xmax | val
------+------+-----
5416 | 5417 | 1

COMMIT WORK;

The tuple bit HEAP_XMAX_EXCL_LOCK is used to indicate that xmax is a locking xid
rather than an expiration xid.

26 / 90



Multi-Statement Transactions

Multi-statement transactions require extra tracking because each statement has its own

visibility rules. For example, a cursor’s contents must remain unchanged even if later

statements in the same transaction modify rows. Such tracking is implemented using
system command id columns cmin/cmax, which is internally actually is a single column.

27 / 90



INSERT Using Cmin

DELETE FROM mvcc_demo;

BEGIN WORK;

INSERT INTO mvcc_demo VALUES (1);
INSERT INTO mvcc_demo VALUES (2);
INSERT INTO mvcc_demo VALUES (3);

28 / 90



INSERT Using Cmin

SELECT xmin, cmin, xmax, * FROM mvcc_demo;
xmin | cmin | xmax | val
------+------+------+-----
5419 | 0 | 0 | 1
5419 | 1 | 0 | 2
5419 | 2 | 0 | 3

COMMIT WORK;

29 / 90



DELETE Using Cmin

DELETE FROM mvcc_demo;

BEGIN WORK;

INSERT INTO mvcc_demo VALUES (1);
INSERT INTO mvcc_demo VALUES (2);
INSERT INTO mvcc_demo VALUES (3);

30 / 90



DELETE Using Cmin

SELECT xmin, cmin, xmax, * FROM mvcc_demo;
xmin | cmin | xmax | val
------+------+------+-----
5421 | 0 | 0 | 1
5421 | 1 | 0 | 2
5421 | 2 | 0 | 3

DECLARE c_mvcc_demo CURSOR FOR
SELECT xmin, xmax, cmax, * FROM mvcc_demo;

31 / 90



DELETE Using Cmin

DELETE FROM mvcc_demo;

SELECT xmin, cmin, xmax, * FROM mvcc_demo;
xmin | cmin | xmax | val
------+------+------+-----

FETCH ALL FROM c_mvcc_demo;
xmin | xmax | cmax | val
------+------+------+-----
5421 | 5421 | 0 | 1
5421 | 5421 | 1 | 2
5421 | 5421 | 2 | 3

COMMIT WORK;

A cursor had to be used because the rows were created and deleted in this transaction
and therefore never visible outside this transaction.

32 / 90



UPDATE Using Cmin

DELETE FROM mvcc_demo;

BEGIN WORK;

INSERT INTO mvcc_demo VALUES (1);
INSERT INTO mvcc_demo VALUES (2);
INSERT INTO mvcc_demo VALUES (3);
SELECT xmin, cmin, xmax, * FROM mvcc_demo;
xmin | cmin | xmax | val
------+------+------+-----
5422 | 0 | 0 | 1
5422 | 1 | 0 | 2
5422 | 2 | 0 | 3

DECLARE c_mvcc_demo CURSOR FOR
SELECT xmin, xmax, cmax, * FROM mvcc_demo;

33 / 90



UPDATE Using Cmin

UPDATE mvcc_demo SET val = val * 10;

SELECT xmin, cmin, xmax, * FROM mvcc_demo;
xmin | cmin | xmax | val
------+------+------+-----
5422 | 3 | 0 | 10
5422 | 3 | 0 | 20
5422 | 3 | 0 | 30

FETCH ALL FROM c_mvcc_demo;
xmin | xmax | cmax | val
------+------+------+-----
5422 | 5422 | 0 | 1
5422 | 5422 | 1 | 2
5422 | 5422 | 2 | 3

COMMIT WORK;

34 / 90



Modifying Rows From Different Transactions

DELETE FROM mvcc_demo;

INSERT INTO mvcc_demo VALUES (1);

SELECT xmin, xmax, * FROM mvcc_demo;
xmin | xmax | val
------+------+-----
5424 | 0 | 1

BEGIN WORK;

INSERT INTO mvcc_demo VALUES (2);
INSERT INTO mvcc_demo VALUES (3);
INSERT INTO mvcc_demo VALUES (4);

35 / 90



Modifying Rows From Different Transactions

SELECT xmin, cmin, xmax, * FROM mvcc_demo;
xmin | cmin | xmax | val
------+------+------+-----
5424 | 0 | 0 | 1
5425 | 0 | 0 | 2
5425 | 1 | 0 | 3
5425 | 2 | 0 | 4

UPDATE mvcc_demo SET val = val * 10;

36 / 90



Modifying Rows From Different Transactions

SELECT xmin, cmin, xmax, * FROM mvcc_demo;
xmin | cmin | xmax | val
------+------+------+-----
5425 | 3 | 0 | 10
5425 | 3 | 0 | 20
5425 | 3 | 0 | 30
5425 | 3 | 0 | 40

SELECT xmin, xmax, cmax, * FROM mvcc_demo;
xmin | xmax | cmax | val

------+------+------+-----
5424 | 5425 | 3 | 1

COMMIT WORK;

37 / 90



Combo Command Id

Because cmin and cmax are internally a single system column, it is impossible to simply

record the status of a row that is created and expired in the same multi-statement

transaction. For that reason, a special combo command id is created that references a
local memory hash that contains the actual cmin and cmax values.

38 / 90



UPDATE Using Combo Command Ids

-- use TRUNCATE to remove even invisible rows

TRUNCATE mvcc_demo;

BEGIN WORK;

DELETE FROM mvcc_demo;
DELETE FROM mvcc_demo;
DELETE FROM mvcc_demo;
INSERT INTO mvcc_demo VALUES (1);
INSERT INTO mvcc_demo VALUES (2);
INSERT INTO mvcc_demo VALUES (3);

39 / 90



UPDATE Using Combo Command Ids

SELECT xmin, cmin, xmax, * FROM mvcc_demo;
xmin | cmin | xmax | val
------+------+------+-----
5427 | 3 | 0 | 1
5427 | 4 | 0 | 2
5427 | 5 | 0 | 3

DECLARE c_mvcc_demo CURSOR FOR
SELECT xmin, xmax, cmax, * FROM mvcc_demo;

UPDATE mvcc_demo SET val = val * 10;

40 / 90



UPDATE Using Combo Command Ids

SELECT xmin, cmin, xmax, * FROM mvcc_demo;
xmin | cmin | xmax | val
------+------+------+-----
5427 | 6 | 0 | 10
5427 | 6 | 0 | 20
5427 | 6 | 0 | 30

FETCH ALL FROM c_mvcc_demo;
xmin | xmax | cmax | val
------+------+------+-----
5427 | 5427 | 0 | 1
5427 | 5427 | 1 | 2
5427 | 5427 | 2 | 3

41 / 90



UPDATE Using Combo Command Ids

SELECT t_xmin AS xmin,
t_xmax::text::int8 AS xmax,
t_field3::text::int8 AS cmin_cmax,
(t_infomask::integer & X’0020’::integer)::bool AS is_combocid

FROM heap_page_items(get_raw_page(’mvcc_demo’, 0))
ORDER BY 2 DESC, 3;
xmin | xmax | cmin_cmax | is_combocid
------+------+-----------+-------------
5427 | 5427 | 0 | t
5427 | 5427 | 1 | t
5427 | 5427 | 2 | t
5427 | 0 | 6 | f
5427 | 0 | 6 | f
5427 | 0 | 6 | f

COMMIT WORK;

The last query uses /contrib/pageinspect, which allows visibility of internal heap page

structures and all stored rows, including those not visible in the current snapshot. (Bit

0x0020 is internally called HEAP_COMBOCID.)

42 / 90



MVCC Implementation Summary

xmin: creation transaction number, set by INSERT and UPDATE

xmax: expire transaction number, set by UPDATE and DELETE; also used for

explicit row locks

cmin/cmax: used to identify the command number that created or expired the tuple;

also used to store combo command ids when the tuple is created and

expired in the same transaction, and for explicit row locks

43 / 90



Traditional Cleanup Requirements

Traditional single-row-version (non-MVCC) database systems require storage space

cleanup:

• deleted rows

• rows created by aborted transactions

44 / 90



MVCC Cleanup Requirements

MVCC has additional cleanup requirements:

• The creation of a new row during UPDATE (rather than replacing the existing

row); the storage space taken by the old row must eventually be recycled.

• The delayed cleanup of deleted rows (cleanup cannot occur until there are no

transactions for which the row is visible)

Postgres handles both traditional and MVCC-specific cleanup requirements.

45 / 90



Cleanup Behavior

Fortunately, Postgres cleanup happens automatically:

• On-demand cleanup of a single heap page during row access, specifically when a

page is accessed by SELECT, UPDATE, and DELETE

• In bulk by an autovacuum processes that runs in the background

Cleanup can also be initiated manually by VACUUM.

46 / 90



Aspects of Cleanup

Cleanup involves recycling space taken by several entities:

• heap tuples/rows (the largest)

• heap item pointers (the smallest)

• index entries

47 / 90



Internal Heap Page

Page Header Item Item Item

Tuple

Tuple Tuple Special

8K

https://stormatics.tech/blogs/postgresql-internals-part-2-understanding-page-structure

48 / 90

https://stormatics.tech/blogs/postgresql-internals-part-2-understanding-page-structure


Indexes Point to Items, Not Tuples

Page Header Item Item Item

Special

8K

Indexes

Tuple1Tuple2

Tuple3

49 / 90



Heap Tuple Space Recycling

Page Header Item Item Item

Special

8K

Indexes

DeadDead

Tuple3

Indexes prevent item pointers from being recycled.
50 / 90



VACUUM Later Recycle Items

Page Header Item Item Item

Special

8K

Indexes

Unused Unused

Tuple3

VACUUM performs index cleanup, then can mark “dead” items as “unused”.
51 / 90



Cleanup of Deleted Rows

TRUNCATE mvcc_demo;

-- force page to < 10% empty

INSERT INTO mvcc_demo SELECT 0 FROM generate_series(1, 220);

-- compute free space percentage

SELECT (100 * (upper - lower) /
pagesize::float8)::integer AS free_pct

FROM page_header(get_raw_page(’mvcc_demo’, 0));
free_pct
----------

3

INSERT INTO mvcc_demo VALUES (1);

52 / 90



Cleanup of Deleted Rows

SELECT * FROM mvcc_demo_page0
OFFSET 220;
ctid | case | xmin | xmax | t_ctid

---------+--------+------+------+---------
(0,221) | Normal | 5430 | 0 | (0,221)

DELETE FROM mvcc_demo WHERE val > 0;

INSERT INTO mvcc_demo VALUES (2);

SELECT * FROM mvcc_demo_page0
OFFSET 220;
ctid | case | xmin | xmax | t_ctid

---------+--------+------+------+---------
(0,221) | Normal | 5430 | 5431 | (0,221)
(0,222) | Normal | 5432 | 0 | (0,222)

53 / 90



Cleanup of Deleted Rows

DELETE FROM mvcc_demo WHERE val > 0;

INSERT INTO mvcc_demo VALUES (3);

SELECT * FROM mvcc_demo_page0
OFFSET 220;
ctid | case | xmin | xmax | t_ctid

---------+--------+------+------+---------
(0,221) | Dead | | |
(0,222) | Normal | 5432 | 5433 | (0,222)
(0,223) | Normal | 5434 | 0 | (0,223)

In normal, multi-user usage, cleanup might have been delayed because other open

transactions in the same database might still need to view the expired rows. However,

the behavior would be the same, just delayed.

54 / 90



Cleanup of Deleted Rows

-- force single-page cleanup via SELECT

SELECT * FROM mvcc_demo
OFFSET 1000;
val
-----

SELECT * FROM mvcc_demo_page0
OFFSET 220;
ctid | case | xmin | xmax | t_ctid

---------+--------+------+------+---------
(0,221) | Dead | | |
(0,222) | Dead | | |
(0,223) | Normal | 5434 | 0 | (0,223)

55 / 90



Same as this Slide

Page Header Item Item Item

Special

8K

Indexes

DeadDead

Tuple3

56 / 90



Cleanup of Deleted Rows

SELECT pg_freespace(’mvcc_demo’);
pg_freespace
--------------
(0,0)

VACUUM mvcc_demo;

SELECT * FROM mvcc_demo_page0
OFFSET 220;
ctid | case | xmin | xmax | t_ctid

---------+--------+------+------+---------
(0,221) | Unused | | |
(0,222) | Unused | | |
(0,223) | Normal | 5434 | 0 | (0,223)

57 / 90



Same as this Slide

Page Header Item Item Item

Special

8K

Indexes

Unused Unused

Tuple3

58 / 90



Free Space Map (FSM)

SELECT pg_freespace(’mvcc_demo’);
pg_freespace
--------------
(0,192)

VACUUM also updates the free space map (FSM), which records pages containing

significant free space. This information is used to provide target pages for INSERTs and
some UPDATEs (those crossing page boundaries). Single-page cleanup does not update

the free space map.

59 / 90



Another Free Space Map Example

TRUNCATE mvcc_demo;

VACUUM mvcc_demo;

SELECT pg_freespace(’mvcc_demo’);
pg_freespace
--------------

60 / 90



Another Free Space Map Example

INSERT INTO mvcc_demo VALUES (1);

VACUUM mvcc_demo;

SELECT pg_freespace(’mvcc_demo’);
pg_freespace
--------------
(0,8128)

INSERT INTO mvcc_demo VALUES (2);

VACUUM mvcc_demo;

SELECT pg_freespace(’mvcc_demo’);
pg_freespace
--------------
(0,8064)

61 / 90



Another Free Space Map Example

DELETE FROM mvcc_demo WHERE val = 2;

VACUUM mvcc_demo;

SELECT pg_freespace(’mvcc_demo’);
pg_freespace
--------------
(0,8128)

62 / 90



VACUUM Also Removes End-of-File Pages

DELETE FROM mvcc_demo WHERE val = 1;

VACUUM mvcc_demo;

SELECT pg_freespace(’mvcc_demo’);
pg_freespace
--------------

SELECT pg_relation_size(’mvcc_demo’);
pg_relation_size
------------------

0

VACUUM FULL shrinks the table file to its minimum size, but requires an exclusive table

lock.

63 / 90



Optimized Single-Page Cleanup of Old UPDATE Rows

The storage space taken by old UPDATE tuples can be reclaimed just like deleted rows.

However, certain UPDATE rows can even have their items reclaimed, i.e., it is possible to

reuse certain old UPDATE items, rather than marking them as “dead” and requiring

VACUUM to reclaim them after removing referencing index entries.

Specifically, such item reuse is possible with special HOT update (heap-only tuple) chains,

where the chain is on a single heap page and all indexed values in the chain are identical.

64 / 90



Single-Page Cleanup of HOT UPDATE Rows

HOT update items can be freed (marked “unused”) if they are in the middle of the chain,

i.e., not at the beginning or end of the chain. At the head of the chain is a special

“Redirect” item pointers that are referenced by indexes; this is possible because all

indexed values are identical in a HOT/redirect chain.

Index creation with HOT chains is complex because the chains might contain
inconsistent values for the newly indexed columns. This is handled by indexing just the

end of the HOT chain and allowing the index to be used only by transactions that start

after the index has been created. (Specifically, post-index-creation transactions cannot

see the inconsistent HOT chain values due to MVCC visibility rules; they only see the end

of the chain.)

65 / 90



Initial Single-Row State

Page Header Item Item Item

Special

8K

Indexes

UnusedUnused

Tuple, v1

66 / 90



UPDATE Adds a New Row

Page Header Item Item Item

Special

8K

Indexes

Unused

Tuple, v2 Tuple, v1

No index entry added because indexes only point to the head of the HOT chain.
67 / 90



Redirect Allows Indexes To Remain Valid

Page Header Item Item Item

Special

8K

Indexes

Redirect

Tuple, v2 Tuple, v3

68 / 90



UPDATE Replaces Another Old Row

Page Header Item Item Item

Special

8K

Indexes

Redirect

Tuple, v4 Tuple, v3

69 / 90



All Old UPDATE Row Versions Eventually Removed

Page Header Item Item

Tuple, v4 Special

8K

Indexes

Redirect

This cleanup was performed by another operation on the same page.
70 / 90



Cleanup of Old Updated Rows

TRUNCATE mvcc_demo;

INSERT INTO mvcc_demo SELECT 0 FROM generate_series(1, 220);

INSERT INTO mvcc_demo VALUES (1);

SELECT * FROM mvcc_demo_page0
OFFSET 220;
ctid | case | xmin | xmax | t_ctid

---------+--------+------+------+---------
(0,221) | Normal | 5437 | 0 | (0,221)

71 / 90



Cleanup of Old Updated Rows

UPDATE mvcc_demo SET val = val + 1 WHERE val > 0;

SELECT * FROM mvcc_demo_page0
OFFSET 220;
ctid | case | xmin | xmax | t_ctid

---------+--------+------+------+---------
(0,221) | Normal | 5437 | 5438 | (0,222)
(0,222) | Normal | 5438 | 0 | (0,222)

72 / 90



Cleanup of Old Updated Rows

UPDATE mvcc_demo SET val = val + 1 WHERE val > 0;

SELECT * FROM mvcc_demo_page0
OFFSET 220;
ctid | case | xmin | xmax | t_ctid

---------+-----------------+------+------+---------
(0,221) | Redirect to 222 | | |
(0,222) | Normal | 5438 | 5439 | (0,223)
(0,223) | Normal | 5439 | 0 | (0,223)

No index entry added because indexes only point to the head of the HOT chain.

73 / 90



Same as this Slide

Page Header Item Item Item

Special

8K

Indexes

Redirect

Tuple, v2 Tuple, v3

74 / 90



Cleanup of Old Updated Rows

UPDATE mvcc_demo SET val = val + 1 WHERE val > 0;

SELECT * FROM mvcc_demo_page0
OFFSET 220;
ctid | case | xmin | xmax | t_ctid

---------+-----------------+------+------+---------
(0,221) | Redirect to 223 | | |
(0,222) | Normal | 5440 | 0 | (0,222)
(0,223) | Normal | 5439 | 5440 | (0,222)

75 / 90



Same as this Slide

Page Header Item Item Item

Special

8K

Indexes

Redirect

Tuple, v4 Tuple, v3

76 / 90



Cleanup of Old Updated Rows

-- transaction now committed, HOT chain allows tid

-- to be marked as "Unused"
SELECT * FROM mvcc_demo
OFFSET 1000;
val
-----

SELECT * FROM mvcc_demo_page0
OFFSET 220;
ctid | case | xmin | xmax | t_ctid

---------+-----------------+------+------+---------
(0,221) | Redirect to 222 | | |
(0,222) | Normal | 5440 | 0 | (0,222)

Trailing Unused item pointers like (0,223) are removed starting in Postgres 15.

77 / 90



Same as this Slide

Page Header Item Item

Tuple, v4 Special

8K

Indexes

Redirect

78 / 90



VACUUM Does Not Remove the Redirect

VACUUM mvcc_demo;

SELECT * FROM mvcc_demo_page0
OFFSET 220;
ctid | case | xmin | xmax | t_ctid

---------+-----------------+------+------+---------
(0,221) | Redirect to 222 | | |
(0,222) | Normal | 5440 | 0 | (0,222)

79 / 90



Cleanup Using Manual VACUUM

TRUNCATE mvcc_demo;

INSERT INTO mvcc_demo VALUES (1);
INSERT INTO mvcc_demo VALUES (2);
INSERT INTO mvcc_demo VALUES (3);

SELECT ctid, xmin, xmax
FROM mvcc_demo_page0;
ctid | xmin | xmax
-------+------+------
(0,1) | 5442 | 0
(0,2) | 5443 | 0
(0,3) | 5444 | 0

DELETE FROM mvcc_demo;

80 / 90



Cleanup Using Manual VACUUM

SELECT ctid, xmin, xmax
FROM mvcc_demo_page0;
ctid | xmin | xmax
-------+------+------
(0,1) | 5442 | 5445
(0,2) | 5443 | 5445
(0,3) | 5444 | 5445

-- too small to trigger autovacuum

VACUUM mvcc_demo;

SELECT pg_relation_size(’mvcc_demo’);
pg_relation_size
------------------

0

81 / 90



The Indexed UPDATE Problem

The updating of any indexed columns prevents the use of “redirect” items because the
chain must be usable by all indexes, i.e., a redirect/HOT UPDATE cannot require

additional index entries due to an indexed value change.

In such cases, item pointers can only be marked as “dead”, like DELETE does.

No previously shown UPDATE queries modified indexed columns.

82 / 90



Index mvcc_demo Column

CREATE INDEX i_mvcc_demo_val on mvcc_demo (val);

83 / 90



UPDATE of an Indexed Column

TRUNCATE mvcc_demo;

INSERT INTO mvcc_demo SELECT 0 FROM generate_series(1, 220);
INSERT INTO mvcc_demo VALUES (1);

SELECT * FROM mvcc_demo_page0
OFFSET 220;
ctid | case | xmin | xmax | t_ctid

---------+--------+------+------+---------
(0,221) | Normal | 5449 | 0 | (0,221)

84 / 90



UPDATE of an Indexed Column

UPDATE mvcc_demo SET val = val + 1 WHERE val > 0;

SELECT * FROM mvcc_demo_page0
OFFSET 220;
ctid | case | xmin | xmax | t_ctid

---------+--------+------+------+---------
(0,221) | Normal | 5449 | 5450 | (0,222)
(0,222) | Normal | 5450 | 0 | (0,222)

UPDATE mvcc_demo SET val = val + 1 WHERE val > 0;

SELECT * FROM mvcc_demo_page0
OFFSET 220;
ctid | case | xmin | xmax | t_ctid

---------+--------+------+------+---------
(0,221) | Dead | | |
(0,222) | Normal | 5450 | 5451 | (0,223)
(0,223) | Normal | 5451 | 0 | (0,223)

85 / 90



UPDATE of an Indexed Column

UPDATE mvcc_demo SET val = val + 1 WHERE val > 0;

SELECT * FROM mvcc_demo_page0
OFFSET 220;
ctid | case | xmin | xmax | t_ctid

---------+--------+------+------+---------
(0,221) | Dead | | |
(0,222) | Dead | | |
(0,223) | Normal | 5451 | 5452 | (0,224)
(0,224) | Normal | 5452 | 0 | (0,224)

86 / 90



UPDATE of an Indexed Column

SELECT * FROM mvcc_demo
OFFSET 1000;
val
-----

SELECT * FROM mvcc_demo_page0
OFFSET 220;
ctid | case | xmin | xmax | t_ctid

---------+--------+------+------+---------
(0,221) | Dead | | |
(0,222) | Dead | | |
(0,223) | Dead | | |
(0,224) | Normal | 5452 | 0 | (0,224)

87 / 90



UPDATE of an Indexed Column

VACUUM mvcc_demo;

SELECT * FROM mvcc_demo_page0
OFFSET 220;
ctid | case | xmin | xmax | t_ctid

---------+--------+------+------+---------
(0,221) | Unused | | |
(0,222) | Unused | | |
(0,223) | Unused | | |
(0,224) | Normal | 5452 | 0 | (0,224)

88 / 90



Cleanup Summary

Reuse Non-HOT HOT

Cleanup Heap Item Item Clean Update

Method Triggered By Scope Tuples? State State Indexes? FSM

Single-Page SELECT, UPDATE, DELETE single heap page yes dead unused no no

VACUUM autovacuum or manually all potential heap pages yes unused unused yes yes

Cleanup is possible only when there are no active transactions for which the tuples are visible.
HOT items are UPDATE chains that span a single page and contain identical indexed column
values.
In normal usage, single-page cleanup performs the majority of the cleanup work, while VACUUM

reclaims “dead” item pointers, removes unnecessary index entries, and updates the free space
map (FSM).

89 / 90



Conclusion

https://momjian.us/presentations Escher, Relativity

90 / 90


